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Theoretical calculations of turbulent bispectra 
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One-dimensional bispectra are computed from the statistical theory of turbulence 
(using theTest Field Model) and are comparedwith experiments. For an inertial range, 
we obtain B(k,,p,)  = sk-3F(8), where B is the two-dimensional Fourier transform of 
(u(x) u(x + $5,) u(x + t&)) with respect to (El, E z ) ,  B is the energy dissipation and F(6) 
(0 = tan-l (kJp , ) )  is an angular distribution of order unity, which is compared to 
measurements of planetary boundary-layer turbulence. We also compare theory to 
wind tunnel data, as reported by Helland et al. (1978). Finally, we discuss to what 
extent the bispectra give insight into the dynamics of the flow. 

1. Introduction 
Lii, Rosenblatt & Van Atta (1976) and Holland, Lii & Rosenblatt (1978) have 

reported experimental measurements of bispectra for both wind-tunnel and planetary 
boundary turbulence. Such measurements contain important aspects of energy 
transfer that an analytic theory of turbulence should be able to explain. We recall in 
this connexion that the (velocity derivative) skewness is simply the integral of a 
bispectrum over a two-dimensional wavenumber domain (Lii et aE. 1976), while the 
energy transfer function is just the three-dimensional bispectrum. However, as noted 
by Yeh & Van Atta (1973), a specification of the one-dimensional bispectrum is in- 
sufficient to derive the energy transfer function. Bispectra were originally proposed by 
Hasselman, Munk & MacDonald (1963) as a statistical means of describing nonlinear 
interacting ocean waves. McComas & Briscoe (1980) recently reported an extensive 
theoretical and experimental investigation of bispectra calculationsfor internal waves. 
A systematic accocnt of their symmetry properties for isotropic turbulence has been 
presented by Craya ( 1  958). 

This paper reports theoretical results for the one-dimensional bispectrum using 
results from the direct-interaction approximation (DIA) (Kraichnan 1959), as well as 
the simpler test field model (TFM) (Kraichnan 1971). Results here are for self-similar 
decay at moderate Reynolds numbers and for an inertial range. At moderate Reynolds 
numbers, our theoretical results are in fair agreement with the experimental results 
cited above. At large Reynolds number (in the inertial subrange), the TFM method 
predicts the bispectrum to scale as wavenumber to the minus three, a result also 
obtained independently by Van Atta (1979). The distribution of the bispectra pre- 
dicted by the theory agrees moderately well with that found experimentally. It 
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indicates a strong non-local transfer (with large values near either wavenumber axis 
and a smooth distribution throughout the interior wavenumber domain). 

Section 2 gives theoretical formulas derived from the DIA and TFM, as well as a 
sketch of how necessary integrations are performed. Results are presented in $ 3  
and compared to the experiments, while $ 4 discusses what insights the bispectra can 
offer towards understanding the dynamics of turbulence. 

2. Theory 
2.1. Kinematics 

We resolve a field of homogeneous turbulence of velocity v(x, t )  into Fourier com- 
ponents u(k,  t )  by 

v(x,t) = xexp(k .x)u(k , t )  (1)  
k 

where, k = 2 4 0 ,  + 1, + 2 , .  . . ) /L ,  and we suppose the flow to be periodic in a large 
cube of dimensions L3. Next we define the triple moment Q b y  

Q i j , ( k  P, 9) = (ui(k, t )  u j ( ~ ,  t )  u,(q,t)), (2) 

where the angular brackets represent the ensemble mean. A more experimentally 
assessable quantity simply related to Q is 

As noted by Lii et al. (1976), (u(z) u(x + rl) u(x+ r2)) is the Fourier transform of the 
bispectrum Blll(kl,pl) with respect to (kl,pl): 

(u(x)4x+7-1)u(x+r2)) = ~ ~ ~ ~ - ~ ~ ~ ~ l d P l ~ l l l ~ ~ l , P 1 ~ ~ ~ P  m l ~ l + P l r 2 ) ) .  (4a) 

< ( W x ) / W  (au(x + r 1 ) / W  ( W x  + T 2 ) / W )  = 1 dkl dPlB;ll(kl,Pl) exp (i(klT1 +P1 r2)). 

It is also useful to define a bispectrum with respect to velocity derivatives B‘ such that 

(4b) 

B’(kl9Pl) = iklPl(k1 +Pl)B(kl>Pl). (5) 

From (4a), (4b) and (3),  

Here omitted tensor subscripts are understood to be (1 11). 

7IJk) = (u,(k) ui( - k)) (L/2n)3 

We take the turbulence to be isotropic so that the second-moment spectrum 

is V,,(k, t )  = $(Sij - ki kj/k2) U ( k ,  t )  $P,j(k) U ( k ,  t ) .  (6) 

Also needed are the two-time spectra U ( k ,  t ,  t ’ )  = (u(k, t )  u( - k, t’))(L/2n)3, for 
which (6) is also used, replacing U ( k ,  t )  by U(k,  t ,  t‘) where needed without any further 
change in notation. 

2.2. Formulasfrom DIA and T F M  
The DIA expression for Q is 

P, qf = (WW+ P + 9) d~ {(%(k) %j(p) P,,(q)P,  + P,#) %j(p) %(S) qrn) 

(7) 
I n  (7), ei is given by (6) and Gfi(k , t , s )  measures the response in ui(k, t )  due to an 

1: 
x G@, t ,  8) U ( P ,  t ,  8) U ( q ,  t ,  8) + (k, i-+ p,j; P , j  + q, n; Q, n-t k, i) 
+ (k , i - tq ,  n; p,j+  k, i; q, n+ p,j)}. 
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infinitesimal force field fi(k, t‘) and Gij = P,,(k) G. Here and throughout this paper, 
summation on repeated vector indices is understood, unless explicitly exempted. 

The TFM expression for Q is most easily described as an abridgment and modifica- 
tion of the ds-historical integral in (7). It replaces 

1)s G(k, t, sf U(P7 t ,  sf U(q,  t ,  

by ~ ~ d s G ~ ( k , t , s ) C 8 ( p , t , s ) Q ( g , t , s )  U(P,t) U(%% (8) 

where the G’s are response functions of a test field and satisfy, for the compressive and 
solenoidal components, 

Expressions for the 7’s are contained in Kraichnan (1971) or in Herring & Kraichnan 
(1972); for brevity we shall not record them. We only note the inertial range form for 

(a /a t+yk2+7(c , s ) (k , t ) )G(c , s ) (k , t )  = 0. (9) 

the 7’s (Kraichnan 1971): 
r ( k )  = c,&k8, C, = 0.34384, 

U(k) = 1.34288 (k-’3’/27~). ( l o b )  

g is a scale factor, chosen to best match inertial range experiments (g = 1-5). For self- 
similar decay, ~ ( k ,  t)  is nearly independent of t so that (8) may be more conveniently 

where 

The DIA has a well-known failing of not properly distinguishing between large- 
scale convection and distortion. Consequently, its prediction for the inertial range is 
wrong (k-Q instead of k-8). This defect is remedied in the TFM by two changes: ( 1 )  a 
Markovianization, and (2) the introduction of relaxation time scales (reciprocals of 
the 7’s) which are invariant t’o large-scale convection. These changes effect a switch 
of the historical integral in (7) from Eulerian to Lagrangian character. The changes 
introduced in passing from the DIA to the TFM appear somewhat arbitrary, perhaps 
justifying the word model in the anagram. However, the theory models spectral detail 
[as contained in (7), (9), and ( l i ) ]  rather t,han integral-scales of the motion, as in 
single-point or second-moment modelling. Thus, in general, no assumption of spectral 
self-similarity need be invoked but is rather a consequence of the theory. I n  the con- 
text, of a perturbatron theory, the TFM is a zeroth step in a formal self-consistent 
scheme (Kraichnan 1971). As in all such procedures, the zeroth order is at  the disposal 
of the theorist. 

Numerical studies of the TFM for both moderate and large Reynolds numbers 
suggest that  it is a fairly accurate and economical procedure (Herring & Kraichnan 
1972; Herring et al. 1974). This assessment includes comparisons with numerical 
simulations of Orszag & Patterson (1972) as well as with the data of Van Atta & Chen 
(1969). 

2.3. Reduction of integrals and numerical methods 

In the evaluation of Blll(kl,pl), as given by (3),  denote by P(k, p, q)  the terms on the 
right-hand side of (7) to  t,he right of 6(k + p + q) (excluding the cyclic permutations) so 
that Qlll(k, p, q) may be written as 

7 k p q  = 7(n) + T(P) + r ( d *  

QIll(k> P) q) = 4(i)-lS(k + P + q)(F(k, P, q) + P(P, q, k) + F(q, k, PI). (12) 
7-2 
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The integrals in passing from ( 2 )  to ( 3 )  are conveniently done in cylindrical co- 
ordinates, with k ,  and p 1  taken as the axes of the cylinders. Inspection of (7) shows 
that the integrand for the cylindrical angular factors (dQ,d#,) depends only on 
9 = (#k - &) so that 

To effect the remaining three integrals over the radial (k, p) dimensions (k,, and p,,) 
and 9, transform to variables ( k , p ,  q):  

and 

This method of decomposing integrals for B differs somewhat from that used by Yeh & 
Van Atta (1973) [see their equation ( 2 2 ) ] .  The present method is convenient here 
because the DIA form for Q as given by (7)  is used. Yeh & Van Atta, on the other hand, 
decompose B(k, k') ( s  &(k, p, q)/6(k + p + 9)) into its (k, k)-isotropic form, which 
involves the angle cos-1 (k.  k l k k ' )  = pk, an angle that does not occur in (7). The 
methods are, of course, equivalent. 

Note the symmetry condition, 

and the condition 
4 1 , ( 0 ,  P l )  = 0, 

which follows from the Fourier transform of (4a) ,  if the ensemble mean flow is zero and 
if ensemble means are equivalent to spatial means. 

Numerical evaluation of (13) is by Gaussian methods. First suppose that U ( k )  
decreases sufficiently rapidly so that any ( k , p ,  q )  > kmax contributions to (13) may be 
neglected with impunity. Then linearly map each of the three wavenumber regions 
(kl  S k 6 kmax), ( p l  5 p 5 km,,), (9- 5 q 5 min (a+, k m a x ) )  into the interval ( -  1,11 
and write the resulting integrals in the Gaussian form 

(see, e.g., Stroud & Secrist 1966). Here I ( $ ) ,  p,.and pz are picked so that I ( z )  is free 
from singularities. For the mapped-(k,p) integrals, p, = pz = 0. The values ( p l , p 2 )  for 
the mapped-q integration depend on whether the singularities of K ( k ,  p, q) are en- 
countered in the mapped-q domain for fixed ( k , p ) .  If k,,, 5 q+, p1 = 0, ,u2 = -&;  
otherwise p, = p 2  = - +. 
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FIGURE 1 .  Inertial range one-dimensional bispectrum angular distribution [equation (IS)] as a 
function of 0 = tan-' (k: /p , ) .  Pointe are data of Lii et al. (1976) as rescaled by Van Atta (1978). 
Solid line from TFM [equations (lOa), ( l o t )  and (13)]. 

3. Results 
3.1. Inertial range 

Inserting the inertial range forms for ~ ( k )  and U ( k ) ,  as given by ( IOU) and (lob),  into 
(13) results in 

(16) 

where 8 = tan-l (pl/kl). e is the dissipation of kinetic energy and the dimensionless 
function F ( 8 )  is given in figure 1.  The strong angular dependence of F(8)  on 8 is 
indicative of the non-localness of the energy transfer mechanism. Similar observations 
have been made by Yeh & Van Atta (19731, Lii et at. (1976), and Helland et al. (1978) 
concerning the experimental data. Analytically, we have from ( loa) ,  (lob), and (7): 

Blll(k1, Pl) = M+ P:)-W@t 

p(e)+e-g as e+o. (17) 

The points (and error bars) in figure 1 are the data of Lii et al. (1976), with a scaling 
worked out by Van Atta (1979) and independently by Helland (private communica- 
tion). Agreement between theory and experiment appears satisfactory, with a deterio- 
ration in agreement as 8 + in, where the theoretical estimate exceeds experiment by 
N 30 yo. We have no suggestion at  present why theory should exceed the experiments. 
Perhaps the experimental values are smaller because some of them are near the dissi- 
pation range (k /k8  N 0.1). It is interesting that no change occurs by adjusting the TFM 
scale factor g2. 

Other one-dimensional bispectra of possible interest are B221(kl,pl), B122(k1,p1), and 
B212(k1,p1). These are kinematically related by 

B,,l(kl, Pl) = - B212(Pl, - kl -PA (18) 
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FIGURE 2. Angular distribution G(0) for inertial range bispectrum B,,,(k,, p l )  as a function of 

8 = tan-l (kJp , ) .  F(0)  according to TFM [equations (loa), ( l o b )  and (13)]. 

and Bl22(kl,Pl) = B221@1, kl) ,  (19) 

irrespective of isotropy. For isotropic inertial-range turbulence, we may again charac- 
terize B,,, by an equation like (16) : 

H ( 8 )  = - ( 1  +2sin8cos8+sin28)~G(-tan(1+cotan8)).  (22) 

Figure 2 gives the inertial range form of G(8) for - 0 < 8 < tn-. G(8) is slightly larger 
than F(8)  over the entire angular domain. 

3.2. Hoderate-Reynolds-number results 
At moderate R, we compare results with the wind tunnel data of Helland et al. (1978). 
For these data, R, 40 and a distinct inertial range does not exist. To make the 
comparison, we may set up an initial value problem whose initial RA is near 40 and 
whose shape evolves quickly (i.e. within a few eddy turnover times) into a near-self- 
similar profile, particularly at large k.  One way of proceeding is to pick E(k,  0) as 

(23) 

Form (23) evolves into a completely self-similar shape with a constant RA, independent 
of time t. However, a t  large t (23) yields E(t)  = I E ( k , t ) d k  - t-l apparently at 
variance with experiments, which appear more consistent with E(t )  N t-133 (Yeh & 
Van Atta 1973). 

E(k ,  0) = Akexp (-Bk). 
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Alternatively, we could pick 

(24) 

which at  large R has been shown by Lesieur & Schertzer (1978) to evolve as E ( t )  - t-1.39, 
with a Rh(t)  which decreases with t .  If (24) is used as initial data, the viscosity should 
be adjusted so that Rh(0) > 40, and then theory and experiment should be compared 
for that t at which Rh( t )  = 40. Rh(0) should be picked sufficiently large that any initial 
transients are entirely damped out by the time Rh( t )  = 40. For the present runs, 

The two runs considered are: (1) A = 0.04, B = 0.2, E(k,O) from (23), and v = 
0.00147; and (2) A’ = 0.0004814, B’ = 0.04, E(k,O) from (24), and v = 0.00231. 
Figure 3 ( a )  compares the one-dimensional compensated energy spectrum, 

Rn(0) = 200. 

for runs (1) and (2). Little difference between (23) and (24) initial conditions is evident 
in the comparison, except at  very small k .  The one-dimensional dissipation spectrum 
$(4 k2, 

is compared in figure 3 ( b )  to the data of Helland et al. (1978) (dashed line). Differences 
in k2$(k)  between runs ( 1 )  and (2) are not detectable. The comparison with experiment 
is reasonably good. Figure 4 gives contours (for run 2) of the bispectra of velocity 
derivative [see equation (5)] scaled by the energy dissipation e. The unit of wave- 
number here is ks = (c/v3)&. 

We compare these theoretical calculations with the data of Helland et al. (1978) in 
figures 5 (a ,  b). Figure 5 (a )  corresponds to our runs ( 1 )  or (2) above, while figure 5 (b)  is a 
similar perspective plot of their table 1 data. Here B’(kl ,pl)  is again scaled by the 
energy dissipation and ( k l , p l )  by k,. The comparison is reasonably good, but the 
theoretical estimates are significantly smaller than experiment near the peak of 
B’(kl ,pl) .  Such an underestimate of energy transfer a t  this wavenumber by the TFM 
relative to the data of Yeh & Van Atta (1973) has also been noted by Newman & 
Herring (1979). The above comparison is more clearly revealed by sectioning the reliefs 
of figure 5. Such sections are shown on figure 6 for several p l  = constant slices. The 
experimental error bars are included in this comparison. 

4. Conclusions 
At large R, the theoretical estimates for B(kl ,pl)  obtained by the TFM appear in 

reasonably good agreement with observations as presented by Helland et al. (1978) 
and by Van Atta (1978). How sensitive this result is to the underlying dynamics is yet 
to be discussed. For example, if we had used the DIA (with its wrong inertial range of 
E(k) = c(Et ( t )e )$k- j  and ~ ( k )  - ( E ( t ) ) l k ) ,  we would still find B N k-3. The same 
remark holds for the eddy-damped Markovian quasi-normal theory (Orszag 1974). 
Hence, from the theoretical viewpoint the scaling law for B is somewhat insensitive 
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FIGURE 3. (a) One-dimensional compensated energy spectrum 

k&-$$(k) = ts -3  (1  - k2/p2)  E ( p )  dp/p)  ks R 
as given by: (1) TFM, E(k,  0) = Ak exp ( -  Bk), v = 0-0047, A = 0.04, B = 0.2 (dashed line); 
(2) TFM, E(k,  0) = A'k4 exp (-B'k), Y = 0-00231, A' = 0.0004814, and B' = 0.04 (eolid line). 
( b )  One-dimensional dissipation function kzq5(k) as computed from runs (1) or (2). Comparison is 
madewithdata asgiven infigure 2of Hellandetal. (1978) (shown hereas dashed line).The theoreti- 
cal curves are the results of an initial value problem for which R(t) = 50. Kolmogorov scaling is 
used throughout. 
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FIGURE 4. Contours of bispectrum B'(kl, pl) [see equation ( 5 ) ]  for run (2).  B' is in units of energy 

dissipation and wavenumber units are (e/VS)i. 

to whether the time scales for the relaxation of triple moments are properly described 
in the theory used. The same remarks, of course, may also be made of the skewness. 
Thus, the ansatx that  B depends only on 6 and k does not isolate the Lagrangian dy- 
namics of the energy transfer mechanism as does a similar statement about the energy 
spectrum. 

At moderate R,, our results for B'(kl,pl)  are in qualitative agreement with experi- 
ments. Quantitatively, the TFM underestimates the energy transfer near the peak of 
B'(k,,p,). One nice feature of the one-dimensional bispectrum not possessed by the 
energy transfer function is their near insensitivity to the energy spectrum at wave- 
number k', if k' < min (k l ,p l ) .  An examination of (13) shows that B(k,,p,)  depends on 
U(k ' )  only through the dependence of y ( k )  on U(k').  One may then expect that measure- 
ments of B(k, ,pl)  for large (k, ,p,)  will not be very sensitive to  the spectrum a t  small k,  
where the experimental flow is probably neither self-similar nor isotropic. 

In  closing, we mention that McComas & Briscoe (1 980) reported recently anextensive 
investigation of bispectra of internal waves in the ocean. His theoretical procedure 
was weak wave interaction theory - identical to the (Markovian) quasi-normal ap- 
proximation noted above. His comparison of theory and observation was somewhat 
hampered by a data record length. His conclusion ' that  bispectra are too insensitive 
a technique for observing the nonlinear dynamics of the internal wave field' has, per- 
haps, a counterpart in hydrodynamic turbulence, where we have observed that the 
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FIGURE 5. Perspective plots of Bill(kl, pl) (a) for run 2 and (a) the data of Helland el al. (1978). 
Units are the same as figure 4. 

scaling law B N k-3 is insensitive to the particular theory used. Only the angular dis- 
tribution P(8)  [equation (IS)] is sensitive to the dynamical time scales entering the 
theory. However, for hydrodynamical turbulence, the quality of inertial range data 
reported by Helland et al. (1978) and also the moderate R, data mentioned above are 
sufficient to assess the accuracy of theoretical procedures such as the DIA or TFM. 
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FIGURE 6. Sectioned plots of figure 5 ,  i.0. Bil l (k l ,  p l )  for various p , .  Error bars on data as indi- 
cated by Helland et al. (1978). (a )  p l / k 8  = 0.0383; ( b )  p , / k ,  = 0.0767; ( c )  p , / k ,  = 0.1534; 
(d)  p J k ,  = 0.2684. 
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